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1. Introduction. If data on an auxiliary char- 
acteristic X correlated with the characteristic 
Y under study is available, then it is customary 
to use this data to provide a more efficient es- 
timate of Y, the population mean. If Y and X 
are correlated and the relationship between the 
two variables is linear, but the relationship 
does not pass through the origin or the correla- 
tion between Y and X is not sufficiently high, 
,quite often a regression type estimator is used. 
A frequently used estimator of this type is the 
so- called difference estimator suggested by 
Hansen, Horwitz and Madow (1953), defined as 

= (1.1) 

where is a fixed constant, assumed to be 

known, and are the mean per unit estimates 

of and Y, and X is the population mean of X. 

The value of that minimizes V(yd) is easily 

seen to be ß2 = 212/4, the regression coeffi- 

cient of Y on X. If no reliable guess can be 
made about the value of the regression coeffi- 
cient, the usual practice is to estimate it from 
the sample by 

2 
2 

where = (xi (n 

= E(xi-x)2 

and use as an estimator of Y, the regression 

estimator A defined as, 

and 

t = + . (1.3) 

The difference estimator yd is an unbiased 

estimator of the population mean and its vari- 
ance is given by, 

V(Yd) = a2(l-p2) (1 +82) / n (1.4) 

where and are the variances of X and Y, 

a 
12 

is the covariance between X and Y, p is the 

correlation coefficient between X and Y and 

= (P - / (1 P2)1/2 
2 

The regression estimator on the other hand is 
generally biased, the bias vanishing when the re- 
lationship between Y and X is linear. Further 

its variance to terms of order n 
-2 

is given by 

coefficient of Y on X. Let denote the guessed 

value of 02. is relatively close to 02, it 

would appear from the above that yd is more ap- 

propriate than ye as an estimator of Y, other- 

wise ye would be more appropriate. We therefore 

propose an estimator which chooses between 

yd, based on a preliminary test of significance 

of the relative closeness of to 2 and inves- 

tigate its efficiency with respect to other re- 
gression -type estimators currently in use.' 

2. Proposed Regression -Type Estimator. A common 
method of making a test of the relative closeness 
of to is the usage of the statistic, 

t= (s2 ß2s2)1 /2 (2.1) 

where / (n-1) . (2.2) 

If from past experience, it is hypothesized 
that 02 is but nothing further is known about 

02, the proposed estimator based on preliminary 

test of significance, to be called Sometimes 
Regression Estimator may be defined as 

= if t A 

= if t 
(2.3) 

where A is the event Itl < and the comple- 

mentary ;event t > . 

Now we need to look at a criterion for de- 
ciding whether or not the proposed estimator 

has any advantages over yd The most com- 

monly used loss function is the squared error. 
This then leads to considering the variance of 

the estimator s if it is unbiased, or the mean 

square error of if it is biased. We then have 

the expected value of given by 

E(Y5) = E(YdIA)P(A) + (2.4) 

and the mean square error of is given by 

(1.5) M.S.E.(Ys) = -Y)2 = 

...(1_p2) 
(n -2) / n(n -3) . (1.6) 

From past experience, we are often able to 
make an intelligent guess about 02 the regression 
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+ Y)2I 
AC] (AC 

) 

3. Expected Value and Variance of It is nec- 

essary to make suitable assumptions about the 

joint distribution of X and Y in order to obtain a 

closed form for the expected value and the vari- 

ance of . In what follows, we assume that the 

population is infinite and that X and Y have a bi- 

variate normal distribution function. 

(2.5) 



Theorem 3.1: s is an unbiased estimator of the 
population mean . 

Proof: Using the fact that and 
s2, s12) 

are statistically independent, it can be easily 
seen that E(ys) = . Q.E.D. 

Since y 
s 

is an unbiased estimator, we now 

obtain the variance of . As and 

s2, are statistically independent, we 

have from (2.5) 

= v(yd) (02 - 

2 

+ 
2ß0a1 

(Ac ) 

+ 2 

t' = / = get 

f(u,v,t') exPC-u(1-p2 )(1f82) 

- 
ut'2 

n+i-2 

2i(v 
x E 

1=0 
r(i+1) 

in R1= (0 <u <m, 0<t' <w, v>uaiß0/a2) 

(3.1) = )2] 
ut'2 2 

In order to further evaluate this, we need an 

expression for E[ß2- for h= 0,1,2. 
It will be assumed that the sample size is n>4. . 

_1,a: 

r(h+21+1)r(n+2i-h-1) 
2 I(h+2i+1) if h 

1=0 is even, 

= E (29)2i+1 
r2 (21+2) 

2 I(h+2i+2), if h 
1=0 

is odd where m0 = (n-2)/[tQ + (n-2)], 

n -h -1 

K = (1 +82) 2 /a2 - 

I.(,) is the incomplete beta distribution func- 

tion and I(x) denotes 

Proof: It is well -known that the joint density 
function for sl, s2 r = is given by 

n -2 n 

f (sr s2,r)=Ki(sis2) 2 (1-r2) 2 

n-1 2psis2r s2 
2 

+ 
2(1-p2) ala2 

if 0<s2<co, r2<1, 

= 0 otherwise, n-1 
where = (n- l)n- 1 /nr(n- 2)[(1- p2)ala2] 2 

Making the transformation 

u = (n- -p2), = (n- 1)rsls2/2a1a2(1 -p2) 
and 
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n+i-2 

(-1)1211v 
x E 2 

1=0 r(i+1) , 

in R2 = (0 <m, - < t' <0, v< /a ) 
2 

= 0, otherwise, 
n -1 

where K3 = 2n- 2 (1 -p2) 2 / nr(n -2) 

We have 

= [ 1) ]h f (u, v, t' )du dv dt' 
2 

+ [ 21) f (u, v, t' )du dv dt' 
R5 

+15. 

where R4 = (0 <u <m, <t <t0, v <uaiß0/a2), ana 

R5= (0<u<W, v . 

To obtain the desired result the following 
lemmas are needed. 

Lemma 
2 = 2 

- 

Lemma 3.4,: r(10) 2j-3 = r(j-2) . 

(n2 h h+l 1 
N o w , = K f (Q) t 



exp[ -u(1-p2) (1462) (v-0)2] 

n+h+i-2 

- (28 ) idv du dt' 
E a2 

r(i+1) 

= -1)h r(i+i) =0 

Similarly can be obtained. Q.E.D. 

Using Lemma 3.2 and substituting into (3.1) 
we obtain the following theorem. 

Theorem 3.5: V(is) - V(yd) 

I(h+1+1). 

2i +2 
202(1 -P2) +21-1)8 

n n+2i -1 
1(21 +3) 

r(i 2 

-p2) (2i )82i 

n 
1 

n +2i- 
I(21 +3) 

2r(i 2 

As t0 tends to infinity, tends to 

is to be expected since the estimator 

becomes Similarly, as t0 tends to zero, 

tends to V61) since the estimator be- 

comes 

4. Comparison of Different Estimators 

A. Comparison of the sometimes regression esti- 
mator with the difference estimator. 

Consider 

- V(yd))/a2(1 

(4.1) 

D 
Then, have from Theorem 3.5 

2r(j +1) I(2j +3)[ (2j +1)- 2(n +2j -3)e2] . 

(4.2) 

Let =1 -1 in the first summation of (4.2), then 

we have D2(e,m0) = 

+2 

+ 2 r(j (4.3) 

= C (m ) (4.4) 
j 
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where 2) (4.5) 

1)I(2j.5) 
and c 

- +1) 

[ + - 2 jß,1, 2, . 

Consider first the effect of variation in e. 

e will vary over the interval ( -1,1) singe 8 may 
vary over the interval m). 

Lemma 4.1: Fora = 1, 2, ... and 

c = 1, 

Ix(a,c) Ix(a,c+ 2) 
I +1 <1, for 0 <x<1 . 

Ix(a,c +2 

(4.6) 

Proof: L'Hospital's rule may be used to show 

that the lemma holds in a positive neighborhood 
of zero. Then the lemma may be proved for the 

entire interval by defining 0(x) = Ix(a, c +1). 

Ix(a,c 2) - Ix(a,c)Ix(a,c 2), and showing that 

there exists an x1 such that 

0'(x) 0 <x 

<0 x 
1 
<x<1. 

Lemma 4.2: For 0 <m0<1 C0(m0), C1(m0), C2(m0), 

. is a sequence of numbers such that for some 
K>0 

j <K 

< j >K . 

Proof: Since (2j +3)/4(j +1) is a decreasing func- 
tion of j, and by Lemma 4.1, I(2j +3)/I(2j45) 

j = 0,1,2,... is an increasing function of j, 

(2j +3)/4(j +l) - I(2j +3)/I(2j+5) j = 0,1,2,... is 
a decreasing function of j. Now, C0(m0) > . 

Suppose that Cj(m0) > 0 for j = 1,2,... . This 

implies that D2(e, m0) > 0 for 0 <:6 < 1 . But 

from (4.2) for e = e with > 0, 

D2(1/ + e, m0) < 0 for 0 < < 1 leading 

to contradiction. Hence the lemma is proven. 
Q.E.D. 

Define the relative efficiency of with respect 

to as e2(8, m0) = .. 

Theorem 4.3: For fixed such that 

there exists a where 0 <1 and 

D2(e,m0) >0 and hence e2(8,m0) <1, -604(64(80 

and hence e2(8,m0) >1 otherwise. 

Proof: Since from (4.3) D2(e, m0) is symmetric 



in 8, it is necessary only to consider D2(8, m0) 

for 8 positive. 
From (4.2), D2(0, mo) > 0 for 0 < < 1 . 

Further for 8 = + e with e > 0, 

[ (2j +1) - 2(n +2j -3)82] <0 j =0,1,2,-, 
and we have D2(1/ +e, <0, 0 <m0 <1 
Since D2(8, m0) is continuous then there exists 

such that <1 and D2(80, 0,. 

We now show that D2(8, m0) <0 e >e 

Lemma 4.2 there exists a K such that 
Cj(mo) > for j <K 

<0 for j >K . 

By 

Hence E C =0 i.e., C -1= 0; 

and since D2(8, m0) is a power series in 8 which 

converges for -1<0 <1, we get 

aD2(e, m0) 2 -1 -j2j ()8 

and therefore 
00 

< 2K 
-2K 

< 
j=1 

foro <e <1, 

where = (0:8 >0, D2(8,m0) <0 for all 
0 < such that 

a) for 0 fixed and e[ -el, m0) >0 

and hence e2(6, for for 0<m0<1, 

b) for fixed and ( -e2, U (ei, }, 

<l, and 

D2(8, > and hence 

e2(8, m0) < 1 0 < mo < nt 
mo) < 0 and hence 

e2(6, m0) 

c) for O fixed and e{( -1, 1) 

D2(e, and hence e2(6,m0) > 1 

for <m0 . 

Proof: Since D2(8, is symmetric in 0, it is 
necessary only to consider D2(e, for for >0 . 

Suppose for fixed 90 < < 1,3 E(o,l) 
and D2(0, = O. Since 

(8, 
) Lim D2(8, m0) Lim 0, it follows 

m0- 

from 4.4 that if < 0 in the 

òD2(e, mó) 
in the neighborhood of mo=o, then < 

< < 1 . Under that condition there could 
not be a point mg) 0 < < 1 and D2(0, mo) = o. 

Hence in order that D2(e, mg) = it follows 

that there must exist an that < 

It can be similarly shown that if D2(0 *, <0, 

then < O. Therefore for fixed, 
e* 

as 8 increases, D2(e, becomes negative and 

stays negative. Q.E.D. 

Next consider the variation of D2(e, due 

to with fixed. 

Lemma 4.4: If for fixed e, there exists an 
such that 

aD2 (e, no) - m* 

aD2(e, 

then > 0 

= 0 

= 0 

0 

<0 . 

The proof of this lemma follows in a manner 
analogous to the proof of Theorem 4.3. 

Theorem 4.5: There exists > 0 and > 

defined by D2(8í , 1) = 0, and = 8, 
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m = 

<m0 < 1 

Hence if D2(0, = 0 then for 
D2(0, mo) < O. By above if for e =e1, 

D2(01, 1) >0 then D2(01, 0 . 

further for 0=02' D2(02, 1) < 0, then by Theorem 

4.3, 82 >81. Hence = {e: >0 and D2(8, 1) =o}. 

If D2(e, 1) <0 then either =03 and 

0<mo <1 or 8 =84 and 



3 jD2(e4, > 0 

= 0 

0 <m 

<0 1 . 

Now for m0 < mm, D2 (8 , m0) < 0 and 
1 3 1 

m0) > 0, then by Theorem 4.3 8493 e3 . 

Hence 82 = 8 and theorem is proved. Q.E.D. 

Theorem 4.6: For e0 fixed such that 0<e0<1, 

there exists an mg such that for m0 < 

e2(8, m0) e0 . 

Proof: By Lemma 4.4, for fixed 8 or equivalent- 
ly for fixed 8, 

e2(8, m0) =l/ 1 ) e0 for 

0<m <m (8). m =Inf m (8). Hence 0- 0 
<l 

e2(8,50) >e2(m0,8)>e0 for 0 and for any 

[0, W). Q.E.D. 

B. Comparison of the Sometimes Regression Esti- 
mator with the Regression Estimator. 

Let D1(e, = n(V(ÿs),- 1(1-P2) (1-82) 

(4.7) 

Then using (1.4), (1.6), (4.1) and (4.3), it can 
be seen that 

n-1 

=82(1-e2) (n_32) 2 + I(3)/(n-3) 

2 -1)82j+2 
I(2j+5) 

j=o r(j+1)r(n21) 

12j+3 x (4.8) 

Define the relative efficiency of with respect 

to as e1(8,m0) = Consider first 

the effect of variation of 8. 

Theorem 4.7: For fixed such that 0 < < 1, 

there exists a that 0 <8 < l' and 

D1(8,m0) <0 and hence e1(8 ,m0) >1, -80 <0 

>0 and hence el(8,m0) < 1 otherwise. 
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The theorem can be proved by using tech- 
niques similar to those used in proving Theorem 

4.3. 

Next consider the effect of with 8 fixed. 

The result is given without proof in Theorem 4.8. 

Theorem 4.8: With fixed, D1(8,m0) varies with 

D2(8,m0) as a function of m0. For 8 fixed such 

that D1(8,m0) falls in one of the 

following three categories: 

(a) D1(e,m0) is always increasing as a func- 
tion of for 0 < 1; 

(b)3 mg such that 0 <1 and D1(e,m0) is 

increasing as a function of m0 for 

m0 and decreasing for 

(c) D1(e,m0) is always decreasing as a 

function of m0 for 0 <1. 

5. Conclusions and Recommendations Regarding the 
Use of the Sometimes Regression Estimator. 

If conditions are such that the use of re- 
gression type estimators is warranted, the ques- 
tion arises as to when the sometimes regression 
estimator would be most appropriate. Actually, 
the sometimes regression estimator includes both 
the difference estimator and the regression 

estimator as special cases. Hence the some- 

times regression estimator may be used whenever it 
is appropriate to use regression type estimators. 

Consider the effect of change in the relative 
closeness of to Theorem 4.3 gives the re- 

sult that for fixed m0, is greater than 

V(yd) for close to but this relationship 

reverses itself as the distance of 02 from in- 

creases and it remains reversed. Theorem 4.7 
illustrates that the situation is reversed for the 
relationship of the variance of the sometimes re- 
gression estimator to the variance of the regres- 
sion estimator. Analogous results hold for the 
relative efficiencies. These results are illus- 
trated in Figures 1 and 2 for n equal to 6. The 
relative distance between 02 is a fixed un- 

known quantity. However on the basis of past ex- 
perience, it may be possible to have some idea 
about the likely range of values it can take on. 

Now m0 can be fixed in any manner we please. 

If is fixed such that the probability of using 

d is very high, then the relative efficiency of 
s with respect to d is close to 1. On the other 

hand, if is such that the probability of using 

is high, then the relative efficiency of 

with respect to is close to 1. The effect of 

changing the level of significance of the test 
when the relative distance between 0 and 2 is 



fixed is illustrated in Figures 3 and for n 

equal to 6. 

If there is a priori information that may 

be the actual value of the guidelines for 

using the sometimes regression estimator may be 
stated as follows: 

1) is considered a very reliable guess 

for ß2 then may be chosen so that the likeli- 

hood that results in using is high. This 

would tend to minimize the loss in efficiency of 

with respect to 

2) If is not considered a very reliable 

choice for 2 then may be chosen so that the 

likelihood that results in using A is very 
high. This would tend to minimize the loss in 
efficiency of with respect to 
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3) If no further information is available 

about the reliability of the choice of a 

middle range value for may be used. 
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